专业授课与教学成果

 

主要承担《线性代数》、《Calculus》、《数值逼近》、《预条件迭代法数值线性代数》课程教学;

主要教学成果:

1.信息与计算科学专业人才培养的研究》,湖南省教育科学规划课题(XJK01CG008),2002,已结题,主持.

2.数学建模》,555000Jc线路检测中心精品课程,2010,已结题,主持.

 

 

研究方向及研究团队

 

主要从事计算数学学科领域科研工作.

 

 

科研成果

 

1.科技奖励

非线性方程和优化的理论、高效算法及其应用研究 湖南省自然科学奖二等奖,2009年排名第二.

 

2. 科研项目

[1] 《数字图象处理中的几类结构矩阵的理论和算法研究》(10771022,2008-01至2010-12)结题,主持.

[2] 《磁纳米粒子检测中的相关数值分析问题的研究》(11371075,2014-01至2017-12)结题,主持.

 

3. 科研论文(2003年以来主要工作)

[1] Liu C. Z.(刘成志)Liu Z. Y. (刘仲云)Han X. L.Preconditioned progressive iterative approximation for tensor product Bézier patches, Mathematics and Computers in Simulation, 185(2021): 372-383

[2] Liu Z. Y. (刘仲云)Zhou Y., Zhang Y.L. (葡萄牙)On inexact alternating direction implicit iteration for continuous Sylvester equationsNumer. Linear Algebra Appl.2020; e2320https://doi.org/10.1002/nla.2320

[3] Liu Z. Y. (刘仲云), Li S., Yin Y., Zhang Y.L. (葡萄牙)Fast solvers for tridiagonal Toeplitz linear systemsComput. Appl. Math., 39(2020):315, https://doi.org/10.1007/s40314-020-01369-3.

[4] Liu C. Z.(刘成志)Liu Z. Y. (刘仲云)Progressive iterative approximation with preconditioners, Mathematics, 8(2020), 1503https://doi.org/10.3390/ math8091503

[5] Liu Z. Y. (刘仲云), Li Z., Ferreira C.(葡萄牙), Zhang Y. L. (葡萄牙), Stationary splitting iterative methods for the matrix equation AXB = CApplied Math. Comput., 378 (2020): https://doi.org/10.1016/j.amc.2020.125195, SCI

[6] Tian Z. L.Liu Y.Zhang Y.Liu Z. Y. (刘仲云)Tian M. Y.The general inner-outer iteration method based on regular splittings for the Pagerank problemApplied Math. Comput., 356 (2019): 479-501, SCI

[7] Liu Z. Y. (刘仲云)Chen S. H.Xu W. J.Zhang Y. L. (葡萄牙)The eigen- structures of real (skew) circulant matrices with some applicationsComput. Appl. Math., 38 (2019): 178, doi.org/10.1007/s40314-019-0971-9, SCI

[8] Liu Z. Y. (刘仲云)Zhou Y.Zhang Y. L.Lin L., Xie D. X.Some remarks on Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = CApplied Math. Comput., 354 (2019): 305-307SCI

[9] Liu Z. Y. (刘仲云)Wu N. C.Qin X. R.Zhang Y. L. (葡萄牙)Trigonometric transform splitting methods for real symmetric Toeplitz systemsComput. Math. Appl., 75 (2018): 2782-2794SCI

[10] Liu Z. Y. (刘仲云)Qin X. R.Wu N. C.Zhang Y. L. (葡萄牙)The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matricesCanad. Math. Bull., 60 (2017): 807-815SCI

[11] Tian Z. L.Tian M. Y., Liu Z. Y. (刘仲云)Xu T. Y., The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = CApplied Math. Comput., 292 (2017): 63-75SCI

[12] Liu Z. Y. (刘仲云)Ralha R. (葡萄牙)Zhang Y. L. (葡萄牙)Ferreira C. (葡萄牙)Minimization problems for certain structured matricesELA30 (2015)613-631SCI

[13] Liu Z. Y. (刘仲云)Zhang Y. L. (葡萄牙), Santos J. (葡萄牙), Ralha R. (葡萄牙), On computing complex square roots of real matricesAppl. Math. Lett., 25 (2012): 1565-1568SCI

[14] Liu Z. Y. (刘仲云)Zhang Y. L. (葡萄牙), Ferreira C. (葡萄牙), Ralha R. (葡萄牙), Structure-preserving Schur methods for computing square roots of real skew Hamiltonian matricesELA23 (2012): 845-865, SCI

[15] 刘仲云,刘成志,张育林(葡萄牙)对称正定Toeplitz方程组的多级迭代求解, 计算数学,34 (2012): 397-404, CSCD

[16] 王创新, 刘仲云, 一种高速密集视频监控场景背景重构方法, 数据采集与处理, 27 (2012): 346-352, CSCD

[17] Lin L., Liu Z. Y. (刘仲云), An alternating projected gradient algorithm for nonnegative matrix factorization, Appl. Math. Comput., 217 (2011): 9997-10002, SCI

[18] Liu Z. Y. (刘仲云)Zhang Y. L. (葡萄牙), Ferreira C. (葡萄牙), Ralha R. (葡萄牙), On inverse eigenvalue problems for block Toeplitz matrices with Toeplitz blocks, Applied Math. Comput., 216 (2010): 1819-1830, SCI

[19] Liu Z. Y. (刘仲云)Chen L., Zhang Y. L. (葡萄牙), The reconstruction of an Hermitian Toeplitz matrices with prescribed eigenpairsJ. Syst. Sci. Complex., 23 (2010): 961-970, SCI

[20] Wang C. X. (王创新), Liu Z. Y. (刘仲云), Total variation for image restoration with smooth area protection,  J. Signal Proc. Syst., 61 (2010): 271-277, SCI

[21]. Liu Z. Y. (刘仲云),H. Fassbender (德国), Some properties of generalized K-centrosymmetric H-matricesJ. Comput. Applied Math., 215 (2008): 38-48, SCI

[22] Xie D. X, Zhang Z. Z.Liu Z. Y. (刘仲云), Theory and method for updating least-squares finite element model of symmetric generalized centrosymmetric matrices,  J. Comput. Appl. Math., 216 (2008): 484-497, SCI

[23] Liu Z. Y. (刘仲云), Zhang Y. L. (葡萄牙), Ralha R. (葡萄牙): Computing the square roots of matrices with central symmetry, Applied Math. Comput., 186 (2007): 715-726, SCI

[24] Liu Z. Y. (刘仲云), Fassbender H.(德国), An inverse eigenvalue problem and an associated approximation problem for generalized K-centrohermitian matrices, J. Comput. Applied Math., 206 (2007): 578-585, 2007SCI

[25] Liu Z. Y. (刘仲云), Chen H. J., Cao H. D., The computation of the principal square roots of centrosymmetric H-matrices,  Appl. Math. Comput., 175 (2006): 319-329, SCI

[26] Liu Z. Y. (刘仲云), Tian Z. L.Tan Y. X., Computing the least-square solutions for centrohermitian matrix problems,  Appl. Math. Comput., 174 (2006): 566-577, SCI

[27] Liu Z. Y. (刘仲云), Cao H. D., Chen H. J., A note on computing matrix-vector products with generalized centrosymmetric (centrohermitian) matrices, Appl. Math. Comput., 169(2005): 1332-1345, SCI

[28] Liu Z. Y. (刘仲云), Some properties of centrosymmetric matrices and its applications, Numer. Math. J. Chinese Univ. , 14(2005): 136-148, CSCD

[29] Liu Z. Y. (刘仲云), A note on the determinant formulas computation of generalized inverse matrix Padé approximation, Appl. Math. Comput., 150(2004): 865-873, SCI

[30] Liu Z. Y. (刘仲云), Some properties of centrosymmetric matrices, Appl. Math. Comput., 141(2003): 297-306, SCI